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A modified Henon-Heiles model with reflecting walls is suggested to discuss the ergodic property of
the motion of a two-dimensional oscillator with nonlinear coupling. A quantitative method for estimat-
ing the ergodicity of a chaotic trajectory is proposed in terms of a microcanonical distribution. The
influence of the boundary on the ergodic and chaotic behavior is discussed. Our investigations show
that, by adjusting the distance and the shape of the boundary, a simple Henon-Heiles system can reach
ergodicity on the constant-energy surface, and therefore various concepts in traditional statistical phys-

ics can be introduced into this simple system.

PACS number(s): 05.45.+b, 02.50.—r

I. HENON-HEILES MODEL
WITH REFLECTING WALLS

Ergodicity, i.e., the exploration of the energy surface
H (p,q)=E by a typical trajectory, is at the very founda-
tion of statistical mechanics [1-4]. It has been shown
that for ergodic Hamiltonian systems ergodicity (chaos)
provides the validity of the laws of equilibrium thermo-
dynamics and statistical mechanics [5]. In traditional hy-
potheses, this property is always connected to a large
number of degrees of freedom and cannot be proved. The
subject of ergodic theory was primarily the domain of
mathematicians until the advent of modern computers.
In the late 20th century, with the wide exploration of
nonintegrable systems and chaos, studies of ergodicity in
small systems with only a few degrees of freedom have
become an exciting subject. The importance of this sub-
ject lies in that it builds a bridge between traditional
mechanics and statistical physics.

As to ergodicity (or stronger properties such as mixing,
K flow, and so on), the most extensively investigated sys-
tem is the Sinai billiard [6,7]. A particle moves freely in a
container and is reflected elastically on the walls. As long
as the boundary is weakly asymmetric (e.g., by cutting off
an arc on the circular boundary or cutting off a small fan
at one of the corners of the triangular boundary), chaotic
motion and ergodicity on the constant-energy surface can
be achieved. For this system, ergodicity (and mixing, K
flow) has been theoretically and numerically studied
[6-11].

The Sinai billiard is a very special physical system.
Many Hamiltonian systems with nonlinear potentials cor-
respond to billiard systems in the high-energy limit, but
the study of ergodicity for intermediate- and low-energy
cases is still inadequate [12]. Therefore it is necessary to
extend the discussion of ergodicity to general systems
such as anharmonic oscillator systems. To date the only
models amenable to algebraic studies are those with inte-
grable or near integrable Hamiltonians. Integrability
conditions rule out ergodicity. The failure of the algebra-

1063-651X/95/52(4)/3440(7)/$06.00 52

ic approach emphasizes the importance of numerical in-
vestigation [13]. The most widely discussed coupled os-
cillator system is the Henon-Heiles model [14—16], which
has the Hamiltonian

H=1(pt+pi+qi+q3)+qie,— 193 . (1)
The corresponding canonical equation reads

P1=—4172419y Pr=—d,+t4q3—4i, o
41=P1» 42=P; -
This is a rather old model well known to many physicists,
mathematicians, and chemists, because it describes many
problems in physics and chemistry [3]. Numerical ex-
plorations revealed that for E < 5 the motion of the sys-
tem is regular. With increasing energy, Kolmogorov-
Arnol’d-Moser (KAM) tori are destroyed gradually, and
the chaotic region becomes larger. At E =1, the motion
is almost completely chaotic. Therefore the Henon-
Heiles model is an excellent candidate for the discussion
of the relationship between dynamics and statistical
mechanics. People expect that ergodicity on the energy
surface will be achieved with increasing energy E. How-
ever, two drawbacks exist in this model: first, the max-
imum energy of this system is E=1. When E > 1, the
oscillator tends to escape from the saddle points
[(g1,4,)=(0,1), (£V'3/2,—1)], and hence numerical
computation will overflow. Second, the system is not er-
godic on the energy surface even at E=1; some KAM
tori still remain at this highest energy. Moreover, few
good quantitative standards have been used to estimate
the ergodicity of a system. The traditional method for es-
timating the degree of ergodicity is to compute the per-
centage of the number of chaotic trajectories in N ran-
domly selected initial conditions [3,14]. This method
needs a long running time and is not accurate.

In order to discuss the statistical behavior (ergodicity)
of the Henon-Heiles system for various energies, we sug-
gest a modified Henon-Heiles model with reflecting walls
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€; thus the motion of the particle will be restricted inside
a given domain and completely elastic collisions occur on
the boundary. The Hamiltonian then becomes

o |FPitritaitad)teie—1q;

o (outside €) .

(inside €)
(3)

Very rich interesting dynamic behaviors exist in this sys-
tem, which are affected by both the nonlinear coupling
between the oscillators and the shape of the walls. Above
all, the dimension of the boundary may affect the motion
- of the system. For fixed energy, the larger the boundary
is, the more the motion of the system approaches that of
an unbounded Henon-Heiles system. On the other hand,
the shape of the boundary strongly affects the motion of
the system, e.g., by changing the form of the wall, a regu-
lar (chaotic) motion may change into a chaotic (regular)
one. At low energy, the system corresponds to the stan-
dard Henon-Heiles model; in the high-energy limit, the
boundary-restricted Henon-Heiles model becomes a bil-
liard. In these two limits, the dynamic and statistical
behaviors have already been fully discussed, whereas the
intermediate behavior is still not systematically investi-
gated.

By constructing a modified model, we can investigate
the ergodic behavior of the Henon-Heiles system for vari-
ous energy cases. Moreover, after introducing the
reflecting boundaries, we may obtain additional interest-
ing results. In the next section, we suggest a quantitative
method for judging the degree of ergodicity by compar-
ing the cross section distribution generated by a single
chaotic trajectory and the equilibrium microcanonical
distribution. This measured quantity has good physical
meaning and can be obtained by measuring only a single
chaotic trajectory.

II. MICROCANONICAL DISTRIBUTION AND
ITS MEASUREMENT IN CROSS SECTION

In order to estimate the degree for a chaotic trajectory
to cover the energy surface, we propose a method of com-
paring the cross section distribution and the microcanon-
ical ensemble. Taking the Hamiltonian system with two
degrees of freedom for an example, if the system is ergod-
ic, the microcanonical distribution should be

AW xAp,Ap,Aq,Aq,=AT , @)

where AW is the probability of a trajectory entering a
phase volume unit AT" between the E —E +AE energy
shells. On the energy surface, AE —0. By eliminating
P, the probability distribution becomes

| Ap,Aq,Aq,= AV . (5)

|0H /3p, [0H /3p, |

This is the probability of a trajectory visiting the phase
volume AV. In order to derive the cross section (for a
chaotic trajectory to cross a surface, e.g., g, =0) distribu-
tion D(q,,p, ), we use the definition of ergodicity, i.e., the
equality of the temporal average and the phase average:
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Jim — [ Ap,gdt= [ A(p,q) ok /ap,] 2941942 -

(6)

The left side represents the average along a trajectory,
and the right one is the average of the microcanonical en-
semble. A4 (p,q) is an arbitrary physical quantity, and C
is the normalization constant. Near g, =0, the left side
becomes

A(p,q)dt= A (p,q)D (q,,p,)dq,dp,dt
D (q3,p,)
g,

D(q,,p,)
0H /op, | dp,dq,dq, . (7)

=A4(p,q) dq,dq,dp,

=A(p,q)

A comparison of (6) and (7) leads to
D(q,,py)=C . (8)

This result is independent of the detailed form of the
Hamiltonian H(p,q). Note that D(q,,p,) is a two-
dimensional distribution function, i.e., a cross section
density on the g; =0 hypersurface. A general form of
D(s)is

[0H /3 4,

D= Takem,] °

9
which represents the cross section distribution of the two
variables other than 4; and B ; on the A; hypersurface
after the elimigati_on of B i where i,j =1,2, A or B may
be g or p, and A4, B are conjugate variables of 4,B.

First we investigate the distribution on the section
q,=0, D(qg,,p,). In order to simplify the numerical
computation, we define d(q,)dq, as the number of the
crossing points by which a trajectory enters the interval
q,—¢q,tdg, on the g, section, thus

pmax
d(qz)=fp - D(q;,p,)dp,

=C{Pmax(q2 )_pmin(qZ )} ’

where p.., and p... are the maximum and minimum of
P2 on the constant-energy surface H =E and ¢, =0. The
above results are valid for arbitrary Hamiltonians with
two degrees of freedom. For the Henon-Heiles case, we
have

Pmax=V'2E —q5+243, pmn=—V2E—q3+2q3 ,
d(q,)=2CV2E—q}+2q; . (11

(10)

If we consider the crossing point distribution on g, =0,
D(q4,p,), a similar discussion leads to the cross section
distribution d (g, ):

d(q,)=2CV2E —q¢? . (12)

If we are only concerned with the cross section distribu-
tion between g; =a and b, we may use the normalized dis-
tribution
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(g =) (13)
N ToR

to discuss the ergodicity of this region. Note that this p
has a different meaning from that in (5). In the following
section, we shall focus on the numerical discussion of sta-
tistical properties (ergodicity) in our modified Henon-
Heiles model in the g,-p, and g,-p, planes.

III. NUMERICAL RESULTS: DEGREE OF ERGODICITY

For the case E =, the motion is bounded inside an
equilateral triangle domain surrounded by three lines:
q,=V3q;+1, ¢q,=—V3q,+1, g,=—1. When E
exceeds &, the oscillator will escape from the saddles.
Thus we choose the boundary of the form

(g, +V3q,—A)g,—V3q; —A)Ng,+A/2)=0. (14)

A=1 corresponds to the case of the natural boundary (at
E =1). We also discuss the cases A > 1, when the particle
will escape from the saddle points (g,,q9,)=(0,1),
(£V'3/2,—1/2) and be reflected elastically by the
boundary. For cases A >>1, the motion approaches the
Henon-Heiles motion without reflecting walls in the large
E region (the walls play a role only in restricting the tra-
jectory in a finite domain; they do not essentially affect
the dynamics in the region of small |g,| and |g,|). Figure
1 gives two kinds of walls corresponding to A=1, A=2,
respectively. In our computation, we integrate the equa-
tions of motion by the Runge-Kutta method, and the
time step is adjusted according to different energies to
keep the accuracy of the integration.

2.0

0.04

-0.54

FIG. 1. Two kinds of reflecting walls used to discuss the er-
godicity of Henon-Heiles systems. Boundary €, corresponds to
A=1 and € to A=2. (0,1), (£V'3/2, —1) are three saddle

points of the original Henon-Heiles model at E = %
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A. Investigation of ergodicity by changing energy
with walls fixed

Figures 1(a) and 2(b) give the Poincaré sections (g; =0,
p1>0) for energies E=1 and I in the natural boundary
case (€;). A comparison of Figs. 2 with similar figures of
cross sections presented in earlier papers (e.g., see Figs.
8.5, 8.6, and 8.7 of Ref. [1]) is interesting. When E in-
creases from E =1, the motion approaches a more chaot-
ic one at first, and then for sufficiently large energy new
KAM tori appear and the motion becomes less chaotic.
In fact, for very large energy, the region covered by a
chaotic trajectory on the energy surface becomes very
small, and the system approaches an integrable one. This
behavior seems quite different from those usually expect-
ed (with increasing energy, KAM tori would usually be
destroyed and eventually the system would reach ergodi-

T
-04 -0.2 0.0 0.2 04 0.8 08 1.0

FIG. 2. Poincaré cross section (g, =0, p; =0) for the ¢
boundary case with (a) E=1 and (b) E=1.
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city). But considering the effect of the reflecting wall, we
may easily explain this result. This is mainly due to the
competition of the kinetic energy of the particle and the
nonlinear anharmonic potential. When E becomes very
large, the kinetic energy term becomes dominant, and the
portion of the harmonic potential energy and nonlinear
interaction becomes negligible. When E-— o, the
Henon-Heiles system just corresponds to an equilateral
triangle billiard, i.e., a free particle moving inside the
equilateral triangle boundary. This billiard system is in-
tegrable, which has been verified both theoretically and
numerically [2].

In Figs. 3(a)-3(d), we compare the numerical and mi-
crocanonical distributions p(q,) for different energy
cases. Here each numerical p(q,) is obtained by running
a single trajectory, 5X 10° points on the cross section are
collected for the statistics, and g, ranges from —1 to 1.

0.025
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0.020
p(qz) 0A015W
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0.005

0.000

0.014 4 (C)
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p(d,)
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0008 /
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0.4 0.2 0.0 0.2 0.4 0.8 0.8 10
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At E=z, we find that the two curves are in good agree-
ment with each other, which indicates that the system is
almost completely ergodic. When E =1, large deviation
occurs, which means that ergodicity is destroyed again
for high-energy cases.

Figure 4 gives the differences between the numerical
cross section distribution and the theoretical canonical
distribution for the case of the boundary €,(A=1),
€,(A=2). The difference is defined as

A= fblpnum(qi )_pmic(qi )qul . (15)

In the €, case, we find that for small and large energies A
is large, whereas for E € (%, 1) A becomes very small, and
a minimum exists at E =0.225, i.e., the system ap-
proaches the highest degree of ergodicity. For E > 1, A
increases with increasing E, and the system approaches

0.016
0.012
p(qz)

0.008

0.004

0.000 T T T T T T T
04 -0.2 0.0 0.2 04 0.6 0.8 1.0

0.035

(d)

0.030
0.025
p(qz) 0.020

0.015

00104/ .

0.005 4

0.000

T T T T T T T T

-04 -0.2 0.0 0.2 0.4 0.6 08 1.0

9z

FIG. 3. A comparison of theoretical (dashed curves) and numerical distribution p(q,) (solid curves) for different energies E =1 (a),
E={ (b), E=% (0),and E=1 (d). Good agreement is shown in (c). For lower and higher energies, deviations are large, indicating

nonergodicity.
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0.1 4
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FIG. 4. The difference A versus energy E for walls (1) ¢
(A=1) and (2) €, (A=2). A narrow valley for the €, boundary
and a wider one for the €, boundary can be seen.
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an integrable one. This tendency is due to the boundary
effect. When we use the boundary €, (see curve 2 in Fig.
4), we find that the valley of the V-shaped line shifts to-
wards larger energy, and the valley becomes wider and
deeper. This means a better ergodicity can be achieved
for larger boundary cases; this fact will be shown in more
detail in the following subsection.

B. Investigation of ergodicity by changing walls
with energy fixed

It has been shown that ergodicity can be achieved in a
large energy range if A increases. With increasing A, the
effect of reflecting walls decreases, and the bounded
motion approaches the behavior of the unbounded
Henon-Heiles model in the small |q,],|q,| region. In
Figs. 5(a)-5(c), the Poincaré cross sections (g,=0,
p,>0) are shown at E=1 for different A. We find that
the system tends to be more ergodic on the energy surface
with increasing A. This ergodic property can be seen
more easily in Figs. 6(a)-6(c). p(q,) is a semielliptic dis-
tribution for A>V6E if the system reaches ergodicity.

FIG. 5. Poincaré cross section (g, =0, p,=>0) at E =% for equilateral triangle reflecting walls with different dimensions. (a)
A=1.0, (b) A=1.3, and (c) A=1.732. With increasing A, the Henon-Heiles system quickly reaches ergodicity.
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FIG. 6. A comparison of theoretical and numerical distribution p(q,) at E =% for different A. The choice of A is the same as in

Fig. 5. Good agreement is shown for larger A.

As A increases, the degree of erogodicity increases. This
tendency is more clearly shown in Fig. 7, where the
differences A versus A are shown for E=1] and 2. We
find that A decreases sharply within a rather narrow A
range, and this sharp drop turns to be parallel to the A
axis when A continues to increase. It seems to us that on
this minimum A a perfect ergodicity is achieved. Increas-
ing E and A can no longer reduce A, but A can be further
reduced by increasing the number of crossing points (e.g.,
when we use 10° crossing points for statistics, we can get
ALin=0.0198, smaller than that in Fig. 7); this suggests
that this minimum A might be due to statistical error.

IV. CONCLUSIONS

In this paper, we suggest a class of nonlinear coupling
oscillator models with reflecting walls, and thus ergodic
properties at various energies E can be fully investigated.
We find that the modified Henon-Heiles system possesses
quite good ergodic properties at large energy in the phase
space regions far from the reflecting boundary. On the

0.35 1
0.30 4 )
0.25 .
0.20 -
0.5
0.0

0.05

0.00 T T T T

FIG. 7. The difference A versus A for energies (1) E=1 and
QE= % A drops quickly with increasing A, indicating that the
system reaches ergodicity in a small range of A. The two curves
reach the same asymptotic A value in the large A region.
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other hand, we suggest a quantitative method for estimat-
ing the degree of ergodicity. This method is efficient and
has good physical meaning. By comparing the micro-
canonical ensemble distribution and numerical statistical
distribution, the ergodicity of a dynamic system may be
explicitly and quantitatively described. This method is
especially useful for dynamic systems with large degrees
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of freedom. It should be mentioned that the shape of the
reflecting wall will strongly influence the chaotic and er-
godic behavior of the dynamic system. Influenced by
both the nonlinear coupling and the shape of the bound-
ary, the motion of the system will become complicated as
well as interesting and significant. These phenomena will
be discussed in the future.
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